Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(3): e1011200, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470914

RESUMO

Long terminal repeat retrotransposons (LTR-RTs) are powerful mutagens regarded as a major source of genetic novelty and important drivers of evolution. Yet, the uncontrolled and potentially selfish proliferation of LTR-RTs can lead to deleterious mutations and genome instability, with large fitness costs for their host. While population genomics data suggest that an ongoing LTR-RT mobility is common in many species, the understanding of their dual role in evolution is limited. Here, we harness the genetic diversity of 320 sequenced natural accessions of the Mediterranean grass Brachypodium distachyon to characterize how genetic and environmental factors influence plant LTR-RT dynamics in the wild. When combining a coverage-based approach to estimate global LTR-RT copy number variations with mobilome-sequencing of nine accessions exposed to eight different stresses, we find little evidence for a major role of environmental factors in LTR-RT accumulations in B. distachyon natural accessions. Instead, we show that loss of RNA polymerase IV (Pol IV), which mediates RNA-directed DNA methylation in plants, results in high transcriptional and transpositional activities of RLC_BdisC024 (HOPPLA) LTR-RT family elements, and that these effects are not stress-specific. This work supports findings indicating an ongoing mobility in B. distachyon and reveals that host RNA-directed DNA methylation rather than environmental factors controls their mobility in this wild grass model.


Assuntos
Brachypodium , Retroelementos , Retroelementos/genética , Genoma de Planta/genética , Brachypodium/genética , RNA Interferente Pequeno , Variações do Número de Cópias de DNA , Sequências Repetidas Terminais/genética , Filogenia , Evolução Molecular
2.
bioRxiv ; 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38234754

RESUMO

Eukaryotes must balance the need for gene transcription by RNA polymerase II (Pol II) against the danger of mutations caused by transposable element (TE) proliferation. In plants, these gene expression and TE silencing activities are divided between different RNA polymerases. Specifically, RNA polymerase IV (Pol IV), which evolved from Pol II, transcribes TEs to generate small interfering RNAs (siRNAs) that guide DNA methylation and block TE transcription by Pol II. While the Pol IV complex is recruited to TEs via SNF2-like CLASSY (CLSY) proteins, how Pol IV partners with the CLSYs remains unknown. Here we identified a conserved CYC-YPMF motif that is specific to Pol IV and is positioned on the complex exterior. Furthermore, we found that this motif is essential for the co-purification of all four CLSYs with Pol IV, but that only one CLSY is present in any given Pol IV complex. These findings support a "one CLSY per Pol IV" model where the CYC-YPMF motif acts as a CLSY-docking site. Indeed, mutations in and around this motif phenocopy pol iv null mutants. Together, these findings provide structural and functional insights into a critical protein feature that distinguishes Pol IV from other RNA polymerases, allowing it to promote genome stability by targeting TEs for silencing.

3.
Proc Natl Acad Sci U S A ; 119(31): e2121288119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878042

RESUMO

The hormone gibberellin (GA) controls plant growth and regulates growth responses to environmental stress. In monocotyledonous leaves, GA controls growth by regulating division-zone size. We used a systems approach to investigate the establishment of the GA distribution in the maize leaf growth zone to understand how drought and cold alter leaf growth. By developing and parameterizing a multiscale computational model that includes cell movement, growth-induced dilution, and metabolic activities, we revealed that the GA distribution is predominantly determined by variations in GA metabolism. Considering wild-type and UBI::GA20-OX-1 leaves, the model predicted the peak in GA concentration, which has been shown to determine division-zone size. Drought and cold modified enzyme transcript levels, although the model revealed that this did not explain the observed GA distributions. Instead, the model predicted that GA distributions are also mediated by posttranscriptional modifications increasing the activity of GA 20-oxidase in drought and of GA 2-oxidase in cold, which we confirmed by enzyme activity measurements. This work provides a mechanistic understanding of the role of GA metabolism in plant growth regulation.


Assuntos
Temperatura Baixa , Secas , Regulação da Expressão Gênica de Plantas , Giberelinas , Modelos Biológicos , Folhas de Planta , Regulação Enzimológica da Expressão Gênica , Giberelinas/metabolismo , Oxigenases de Função Mista/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Zea mays/enzimologia , Zea mays/crescimento & desenvolvimento
4.
New Phytol ; 235(4): 1426-1441, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35713645

RESUMO

Root hair growth is tuned in response to the environment surrounding plants. While most previous studies focused on the enhancement of root hair growth during nutrient starvation, few studies investigated the root hair response in the presence of excess nutrients. We report that the post-embryonic growth of wild-type Arabidopsis plants is strongly suppressed with increasing nutrient availability, particularly in the case of root hair growth. We further used gene expression profiling to analyze how excess nutrient availability affects root hair growth, and found that RHD6 subfamily genes, which are positive regulators of root hair growth, are downregulated in this condition. However, defects in GTL1 and DF1, which are negative regulators of root hair growth, cause frail and swollen root hairs to form when excess nutrients are supplied. Additionally, we observed that the RHD6 subfamily genes are mis-expressed in gtl1-1 df1-1. Furthermore, overexpression of RSL4, an RHD6 subfamily gene, induces swollen root hairs in the face of a nutrient overload, while mutation of RSL4 in gtl1-1 df1-1 restore root hair swelling phenotype. In conclusion, our data suggest that GTL1 and DF1 prevent unnecessary root hair formation by repressing RSL4 under excess nutrient conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação/genética , Nutrientes , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Plant Cell Physiol ; 63(5): 618-634, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35157760

RESUMO

Many plants are able to regenerate upon cutting, and this process can be enhanced in vitro by incubating explants on hormone-supplemented media. While such protocols have been used for decades, little is known about the molecular details of how incubation conditions influence their efficiency. In this study, we find that warm temperature promotes both callus formation and shoot regeneration in Arabidopsis thaliana. We show that such an increase in shoot regenerative capacity at higher temperatures correlates with the enhanced expression of several regeneration-associated genes, such as CUP-SHAPED COTYLEDON 1 (CUC1) encoding a transcription factor involved in shoot meristem formation and YUCCAs (YUCs) encoding auxin biosynthesis enzymes. ChIP-sequencing analyses further reveal that histone variant H2A.Z is enriched on these loci at 17°C, while its occupancy is reduced by an increase in ambient temperature to 27°C. Moreover, we provide genetic evidence to demonstrate that H2A.Z acts as a repressor of de novo shoot organogenesis since H2A.Z-depleted mutants display enhanced shoot regeneration. This study thus uncovers a new chromatin-based mechanism that influences hormone-induced regeneration and additionally highlights incubation temperature as a key parameter for optimizing in vitro tissue culture.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Hormônios/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Temperatura
6.
Transcription ; 11(3-4): 172-191, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33180661

RESUMO

Multisubunit RNA polymerase (Pol) complexes are the core machinery for gene expression in eukaryotes. The enzymes Pol I, Pol II and Pol III transcribe distinct subsets of nuclear genes. This family of nuclear RNA polymerases expanded in terrestrial plants by the duplication of Pol II subunit genes. Two Pol II-related enzymes, Pol IV and Pol V, are highly specialized in the production of regulatory, non-coding RNAs. Pol IV and Pol V are the central players of RNA-directed DNA methylation (RdDM), an RNA interference pathway that represses transposable elements (TEs) and selected genes. Genetic and biochemical analyses of Pol IV/V subunits are now revealing how these enzymes evolved from ancestral Pol II to sustain non-coding RNA biogenesis in silent chromatin. Intriguingly, Pol IV-RdDM regulates genes that influence flowering time, reproductive development, stress responses and plant-pathogen interactions. Pol IV target genes vary among closely related taxa, indicating that these regulatory circuits are often species-specific. Data from crops like maize, rice, tomato and Brassicarapa suggest that dynamic repositioning of TEs, accompanied by Pol IV targeting to TE-proximal genes, leads to the reprogramming of plant gene expression over short evolutionary timescales.


Assuntos
Elementos de DNA Transponíveis/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Plantas/genética , RNA não Traduzido/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Plantas/metabolismo , RNA não Traduzido/metabolismo
7.
Curr Opin Plant Biol ; 57: 72-77, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32738736

RESUMO

Wounding is a primary trigger for tissue repair and organ regeneration, yet the exact regulatory role of local wound signals remained elusive for many years. Recent studies demonstrated that a key signaling molecule of wound response, jasmonic acid (JA), plays pivotal roles in root regeneration. JA signaling induces cell proliferation and restores root meristem by ectopically inducing an AP2/ERF transcription factor ETHYLENE RESPONSE FACTOR 115 (ERF115) which in normal development, replenishes quiescent center cells. During shoot regeneration, another wound-inducible AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION 1 (WIND1) promotes callus formation and shoot regeneration via direct induction of a shoot meristem regulator. Discovery of these regulatory mechanisms highlights the direct link between stress signaling and ectopic activation of developmental programs. Given that genes encoding key developmental regulators are often under epigenetic regulation, transcriptional activation of these genes likely entails changes in their chromatin status. Recent efforts indeed began to reveal massive changes in histone modification status during cellular reprogramming after wounding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Plant Physiol ; 184(1): 330-344, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32611787

RESUMO

Plants form calluses and regenerate new organs when incubated on phytohormone-containing media. While accumulating evidence suggests that these regenerative processes are governed by transcriptional networks orchestrating wound response and developmental transitions, it remains unknown if posttranslational regulatory mechanisms are involved in this process. In this study, we demonstrate that SAP AND MIZ1 DOMAIN- CONTAINING LIGASE1 (SIZ1), an E3 ligase-catalyzing attachment of the SMALL UBIQUITIN-LIKE MODIFIER (SUMO) to proteins, regulates wound-induced signal transduction and organ regeneration in Arabidopsis (Arabidopsis thaliana). We show that loss-of-function mutants for SIZ1 exhibit overproduction of shoot meristems under in vitro tissue culture conditions, while this defect is rescued in a complementation line expressing pSIZ1::SIZ1 RNA sequencing analysis revealed that siz1-2 mutants exhibit enhanced transcriptional responses to wound stress, resulting in the hyper-induction of over 400 genes immediately after wounding. Among them, we show that elevated levels of WOUND INDUCED DEDIFFERENTIATION1 (WIND1) and WIND2 contribute to the enhanced shoot regeneration observed in siz1 mutants, as expression of the dominant-negative chimeric protein WIND1-SRDX (SUPERMAN repression domain) in siz1-3 mutants partly rescues this phenotype. Although compromised SIZ1 function does not modify the transcription of genes implicated in auxin-induced callus formation and/or pluripotency acquisition, it does lead to enhanced induction of cytokinin-induced shoot meristem regulators such as WUSCHEL, promoting the formation of WUSCHEL-expressing foci in explants. This study thus suggests that SIZ1 negatively regulates shoot regeneration in part by repressing wound-induced developmental reprogramming.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ligases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Ligases/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Methods Mol Biol ; 2166: 387-411, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32710422

RESUMO

Cells have sophisticated RNA-directed mechanisms to regulate genes, destroy viruses, or silence transposable elements (TEs). In terrestrial plants, a specialized non-coding RNA machinery involving RNA polymerase IV (Pol IV) and small interfering RNAs (siRNAs) targets DNA methylation and silencing to TEs. Here, we present a bioinformatics protocol for annotating and quantifying siRNAs that derive from long terminal repeat (LTR) retrotransposons. The approach was validated using small RNA northern blot analyses, comparing the species Arabidopsis thaliana and Brachypodium distachyon. To assist hybridization probe design, we configured a genome browser to show small RNA-seq mappings in distinct colors and shades according to their nucleotide lengths and abundances, respectively. Samples from wild-type and pol IV mutant plants, cross-species negative controls, and a conserved microRNA control validated the detected siRNA signals, confirming their origin from specific TEs and their Pol IV-dependent biogenesis. Moreover, an optimized labeling method yielded probes that could detect low-abundance siRNAs from B. distachyon TEs. The integration of de novo TE annotation, small RNA-seq profiling, and northern blotting, as outlined here, will facilitate the comparative genomic analysis of RNA silencing in crop plants and non-model species.


Assuntos
Arabidopsis/genética , Northern Blotting/métodos , Brachypodium/genética , Genoma de Planta , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Retroelementos/genética , Proteínas de Arabidopsis/genética , RNA Polimerases Dirigidas por DNA/genética , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA-Seq , Sequências Repetidas Terminais/genética
10.
Commun Biol ; 2: 404, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31701032

RESUMO

Plant somatic cells reprogram and regenerate new tissues or organs when they are severely damaged. These physiological processes are associated with dynamic transcriptional responses but how chromatin-based regulation contributes to wound-induced gene expression changes and subsequent cellular reprogramming remains unknown. In this study we investigate the temporal dynamics of the histone modifications H3K9/14ac, H3K27ac, H3K4me3, H3K27me3, and H3K36me3, and analyze their correlation with gene expression at early time points after wounding. We show that a majority of the few thousand genes rapidly induced by wounding are marked with H3K9/14ac and H3K27ac before and/or shortly after wounding, and these include key wound-inducible reprogramming genes such as WIND1, ERF113/RAP2.6 L and LBD16. Our data further demonstrate that inhibition of GNAT-MYST-mediated histone acetylation strongly blocks wound-induced transcriptional activation as well as callus formation at wound sites. This study thus uncovered a key epigenetic mechanism that underlies wound-induced cellular reprogramming in plants.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Código das Histonas/genética , Acetilação , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Reprogramação Celular/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Doenças das Plantas/genética , Plantas Geneticamente Modificadas , Ativação Transcricional
11.
Annu Rev Plant Biol ; 70: 377-406, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30786238

RESUMO

Plants reprogram somatic cells following injury and regenerate new tissues and organs. Upon perception of inductive cues, somatic cells often dedifferentiate, proliferate, and acquire new fates to repair damaged tissues or develop new organs from wound sites. Wound stress activates transcriptional cascades to promote cell fate reprogramming and initiate new developmental programs. Wounding also modulates endogenous hormonal responses by triggering their biosynthesis and/or directional transport. Auxin and cytokinin play pivotal roles in determining cell fates in regenerating tissues and organs. Exogenous application of these plant hormones enhances regenerative responses in vitro by facilitating the activation of specific developmental programs. Many reprogramming regulators are epigenetically silenced during normal development but are activated by wound stress and/or hormonal cues.


Assuntos
Arabidopsis , Citocininas , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Regeneração
12.
Development ; 145(3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29439132

RESUMO

How plants determine the final size of growing cells is an important, yet unresolved, issue. Root hairs provide an excellent model system with which to study this as their final cell size is remarkably constant under constant environmental conditions. Previous studies have demonstrated that a basic helix-loop helix transcription factor ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) promotes root hair growth, but how hair growth is terminated is not known. In this study, we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis Our transcriptional data, combined with genome-wide chromatin-binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other, as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by the orchestrated actions of opposing transcription factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica
13.
Plant Cell Physiol ; 59(4): 765-777, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462363

RESUMO

Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular reprogramming, but the global architecture of gene regulatory relationships underlying plant cellular reprogramming is still far from clear. In this study, we uncovered a gene regulatory network (GRN) associated with plant cellular reprogramming by using an enhanced yeast one-hybrid (eY1H) screen systematically to identify regulatory relationships between 252 transcription factors (TFs) and 48 promoters. Our network analyses suggest that wound- and/or hormone-invoked signals exhibit extensive cross-talk and regulate many common reprogramming-associated genes via multilayered regulatory cascades. Our data suggest that PLETHORA 3 (PLT3), ENHANCER OF SHOOT REGENERATION 1 (ESR1) and HEAT SHOCK FACTOR B 1 (HSFB1) act as critical nodes that have many overlapping targets and potentially connect upstream stimuli to downstream developmental decisions. Interestingly, a set of wound-inducible APETALA 2/ETHYLENE RESPONSE FACTORs (AP2/ERFs) appear to regulate these key genes, which, in turn, form feed-forward cascades that control downstream targets associated with callus formation and organ regeneration. In addition, we found another regulatory pathway, mediated by LATERAL ORGAN BOUNDARY/ASYMMETRIC LEAVES 2 (LOB/AS2) TFs, which probably plays a distinct but partially overlapping role alongside the AP2/ERFs in the putative gene regulatory cascades. Taken together, our findings provide the first global picture of the GRN governing plant cell reprogramming, which will serve as a valuable resource for future studies.


Assuntos
Reprogramação Celular/genética , Redes Reguladoras de Genes , Plantas/genética , Regeneração/genética , Proteínas de Arabidopsis/metabolismo , Reprogramação Celular/efeitos dos fármacos , Citocininas/farmacologia , Redes Reguladoras de Genes/efeitos dos fármacos , Genes de Plantas , Ácidos Indolacéticos/farmacologia , Células Vegetais/metabolismo , Regiões Promotoras Genéticas , Regeneração/efeitos dos fármacos , Fatores de Transcrição/metabolismo
14.
Plant Biotechnol J ; 16(2): 615-627, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28730636

RESUMO

Growth is characterized by the interplay between cell division and cell expansion, two processes that occur separated along the growth zone at the maize leaf. To gain further insight into the transition between cell division and cell expansion, conditions were investigated in which the position of this transition zone was positively or negatively affected. High levels of gibberellic acid (GA) in plants overexpressing the GA biosynthesis gene GA20-OXIDASE (GA20OX-1OE ) shifted the transition zone more distally, whereas mild drought, which is associated with lowered GA biosynthesis, resulted in a more basal positioning. However, the increased levels of GA in the GA20OX-1OE line were insufficient to convey tolerance to the mild drought treatment, indicating that another mechanism in addition to lowered GA levels is restricting growth during drought. Transcriptome analysis with high spatial resolution indicated that mild drought specifically induces a reprogramming of transcriptional regulation in the division zone. 'Leaf Growth Viewer' was developed as an online searchable tool containing the high-resolution data.


Assuntos
Secas , Giberelinas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Plant Physiol ; 175(3): 1158-1174, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28904073

RESUMO

Wounding is a primary trigger of organ regeneration, but how wound stress reactivates cell proliferation and promotes cellular reprogramming remains elusive. In this study, we combined transcriptome analysis with quantitative hormonal analysis to investigate how wounding induces callus formation in Arabidopsis (Arabidopsis thaliana). Our time course RNA-seq analysis revealed that wounding induces dynamic transcriptional changes, starting from rapid stress responses followed by the activation of metabolic processes and protein synthesis and subsequent activation of cell cycle regulators. Gene ontology analyses further uncovered that wounding modifies the expression of hormone biosynthesis and response genes, and quantitative analysis of endogenous plant hormones revealed accumulation of cytokinin prior to callus formation. Mutants defective in cytokinin synthesis and signaling display reduced efficiency in callus formation, indicating that de novo synthesis of cytokinin is critical for wound-induced callus formation. We further demonstrate that type-B ARABIDOPSIS RESPONSE REGULATOR-mediated cytokinin signaling regulates the expression of CYCLIN D3;1 (CYCD3;1) and that mutations in CYCD3;1 and its homologs CYCD3;2 and 3 cause defects in callus formation. In addition to these hormone-mediated changes, our transcriptome data uncovered that wounding activates multiple developmental regulators, and we found novel roles of ETHYLENE RESPONSE FACTOR 115 and PLETHORA3 (PLT3), PLT5, and PLT7 in callus generation. All together, these results provide novel mechanistic insights into how wounding reactivates cell proliferation during callus formation.


Assuntos
Arabidopsis/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Transcrição Gênica , Ácido Abscísico/metabolismo , Arabidopsis/genética , Vias Biossintéticas/genética , Ciclo Celular/genética , Cromatina/metabolismo , Análise por Conglomerados , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Oxilipinas/metabolismo , Estresse Fisiológico/genética , Fatores de Tempo , Fatores de Transcrição/metabolismo
16.
Am J Bot ; 104(6): 905-914, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28626037

RESUMO

PREMISE OF THE STUDY: Autopolyploidy, or whole-genome duplication, is a recurrent phenomenon in plant evolution. Its existence can be inferred from the presence of massive levels of genetic redundancy revealed by comparative plant phylogenomics. Whole-genome duplication is theoretically associated with evolutionary novelties such as the development of new metabolic reactions and therefore contributes to the evolution of new plant metabolic profiles. However, very little is yet known about the impact of autopolyploidy on the metabolism of recently formed autopolyploids. This study provides a better understanding of the relevance of this evolutionary process. METHODS: In this study, we compared the metabolic profiles of wild diploids, wild autotetraploids, and artificial autotetraploids of Arabidopsis thaliana using targeted ultra-high performance liquid chromatography-triple quadrupole- mass spectrometry (UPLC-QqQ-MS) metabolomics. KEY RESULTS: We found that wild and artificial A. thaliana autotetraploids display different metabolic profiles. Furthermore, wild autotetraploids display unique metabolic profiles associated with their geographic origin. CONCLUSIONS: Autopolyploidy might help plants adapt to challenging environmental conditions by allowing the evolution of novel metabolic profiles not present in the parental diploids. We elaborate on the causes and consequences leading to these distinct profiles.


Assuntos
Arabidopsis/genética , Evolução Molecular , Metaboloma , Poliploidia , Diploide , Metabolômica
17.
Plant Physiol ; 173(3): 1750-1762, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28167701

RESUMO

Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as a repressor of cell growth. Ectopic expression of OBP4 in Arabidopsis (Arabidopsis thaliana) inhibits cell growth, resulting in severe dwarfism and the repression of genes involved in the regulation of water transport, root hair development, and stress responses. Among the basic helix-loop-helix transcription factors known to control root hair growth, OBP4 binds the ROOT HAIR DEFECTIVE6-LIKE2 (RSL2) promoter to repress its expression. The accumulation of OBP4 proteins is detected in expanding root epidermal cells, and its expression level is increased by the application of abscisic acid (ABA) at concentrations sufficient to inhibit root hair growth. ABA-dependent induction of OBP4 is associated with the reduced expression of RSL2 Furthermore, ectopic expression of OBP4 or loss of RSL2 function results in ABA-insensitive root hair growth. Taken together, our results suggest that OBP4-mediated transcriptional repression of RSL2 contributes to the ABA-dependent inhibition of root hair growth in Arabidopsis.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Microscopia Confocal , Mutação , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Plant Cell ; 29(1): 54-69, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011694

RESUMO

Many plant species display remarkable developmental plasticity and regenerate new organs after injury. Local signals produced by wounding are thought to trigger organ regeneration but molecular mechanisms underlying this control remain largely unknown. We previously identified an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) as a central regulator of wound-induced cellular reprogramming in plants. In this study, we demonstrate that WIND1 promotes callus formation and shoot regeneration by upregulating the expression of the ENHANCER OF SHOOT REGENERATION1 (ESR1) gene, which encodes another AP2/ERF transcription factor in Arabidopsis thaliana The esr1 mutants are defective in callus formation and shoot regeneration; conversely, its overexpression promotes both of these processes, indicating that ESR1 functions as a critical driver of cellular reprogramming. Our data show that WIND1 directly binds the vascular system-specific and wound-responsive cis-element-like motifs within the ESR1 promoter and activates its expression. The expression of ESR1 is strongly reduced in WIND1-SRDX dominant repressors, and ectopic overexpression of ESR1 bypasses defects in callus formation and shoot regeneration in WIND1-SRDX plants, supporting the notion that ESR1 acts downstream of WIND1. Together, our findings uncover a key molecular pathway that links wound signaling to shoot regeneration in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Brotos de Planta/genética , Fatores de Transcrição/genética , Ativação Transcricional , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Microscopia Confocal , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Regeneração/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Técnicas de Cultura de Tecidos , Fatores de Transcrição/metabolismo
19.
Curr Opin Plant Biol ; 35: 98-104, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27918942

RESUMO

Plant cell growth can broadly be categorized into either diffuse or tip growth. Here we compare gene regulatory networks (GRNs) controlling growth of hypocotyls and root hairs as examples for diffuse and tip growth, respectively. Accumulating evidence shows that GRNs in both cell types are multi-layered in structure and fine-tuned by transcriptional and post-translational mechanisms. We discuss how these GRNs regulate the expression of proteins controlling cell wall remodeling or other growth regulatory processes. Finally, we highlight how specific regulators within GRNs adjust plant cell growth in response to variable environmental conditions.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Células Vegetais/metabolismo , Desenvolvimento Vegetal , Ciclo Celular , Parede Celular/metabolismo
20.
Nat Plants ; 1: 15089, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27250255

RESUMO

Plant somatic cells are generally acknowledged to retain totipotency, the potential to develop into any cell type within an organism. This astonishing plasticity may contribute to a high regenerative capacity on severe damage, but how plants control this potential during normal post-embryonic development remains largely unknown(1,2). Here we show that POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a chromatin regulator that maintains gene repression through histone modification, prevents dedifferentiation of mature somatic cells in Arabidopsis thaliana roots. Loss-of-function mutants in PRC2 subunits initially develop unicellular root hairs indistinguishable from those in wild type but fail to retain the differentiated state, ultimately resulting in the generation of an unorganized cell mass and somatic embryos from a single root hair. Strikingly, mutant root hairs complete the normal endoreduplication programme, increasing their nuclear ploidy, but subsequently reinitiate mitotic division coupled with successive DNA replication. Our data show that the WOUND INDUCED DEDIFFERENTIATION3 (WIND3) and LEAFY COTYLEDON2 (LEC2) genes are among the PRC2 targets involved in this reprogramming, as their ectopic overexpression partly phenocopies the dedifferentiation phenotype of PRC2 mutants. These findings unveil the pivotal role of PRC2-mediated gene repression in preventing unscheduled reprogramming of fully differentiated plant cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA